Ice Nucleation at Low TTL Temperatures

- Understanding ice nucleation in TTL cirrus is important:
 - Evaluating impact of anthropogenic aerosols
 - Supersaturation required for ice nucleation affects dehydration potential
 - Cloud lifetime depends on ice crystal size distribution
- Our understanding of nucleation processes at low T is limited.

- Consistently low ice concentrations measured in TTL cirrus from multiple campaigns (PreAVE, CRAVE, TC4, AMMA, SCOUT, etc.)
- Lawson et al. [ACP,2008], Krämer et al. [ACPD,2008]

Ice nucleation at low Temperatures

Homogeneous freezing requires large supersaturations

Ice nucleation at low Temperatures

Heterogeneous freezing can occur at low supersaturations

Homogeneous freezing event

 Homogeneous freezing produces ice concentrations that exceed measured values.

Homogeneous freezing with gravity wave

Including gravity waves makes the situation worse.

Heterogeneous nucleation (slow cooling)

Heterogeneous nucleation could explain the measured ice concentrations.

Extinction frequency distributions

Extinction frequency distributions

• Simulations with homogeneous freezing (and waves) produce far larger extinctions than indicated by CALIPSO.

Extinction frequency distributions

Limiting ice concentration improves the agreement with observations.

To get lower ice concentrations and broader distributions...

- Generate \simeq 50 L⁻¹ ice crystals first
 - Ice nuclei (ammonium sulfate, oxalic acid, ...)
 - However, IN should be scavenged
- Differential ice growth
 - Cubic ice
 - Favorable defects/habits
- Only a small fraction of aerosols can freeze
 - Organic-containing aerosols transition to glassy state at low T, preventing nucleation

Glass formation in aqueous organic aerosols

- Indicated by two independent laboratory studies
 - Zobrist et al. [ACP, 2008]
 - Murray [ACP, 2008]
- Depends primarily solute molar mass ($M_w > 150 \text{ g mol}^{-1}$)
- High viscosity inhibits ice nucleation and growth
- Prevention of homogeneous freezing requires glass formation in vast majority of aerosols
 - $N_{aer}~(\simeq 100~{\rm cm}^{-3}) \gg N_{ice}~(\simeq 0.01 5~{\rm cm}^{-3})$

Heterogeneous nucleation on subset of glassy aerosols
Murray et al. [2010]

 Heterogeneous nucleation glassy aerosols can provide low ice concentrations

Murray et al. [2010]

Supersaturation: Balloon-borne frostpoint soundings (H. Vömel)

 Both clear-sky and in-cloud supersaturation occur frequently in the TTL

What ATTREX can provide...

- CPL will provide statistics of TTL cirrus occurrence frequency and extinction with better sensitivity than CALIPSO
 - Requires level flight legs above tropopause over cold pools
- Extensive measurements of cold cloud microphysical properties and relative humidities
 - Requires porpoising through cloud layers at altitudes identified by CPL an Hawkeye
- ullet Lagrangian flights indicating RHI threshold for nucleation, evolution of cloud properties and impact on water vapor
 - Requires Lagrangian flights in and out of cold pools at cloud altitude (below tropopasue)
- Case studies for process models